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Abstract--In an earlier paper we showed that the relative particle trajectories in simple shear flow of small 
spheres and large spheroids subjected to attractive van der Waals forces can be divided into five types: 
(i) trajectories leading to capture of the sphere by the spheroid during the first encounter; (ii) single-pass 
trajectories; (iii) trajectories leading to capture after successive encounters (transient orbits); (iv) 
trajectories leading to separation after several transient orbits; and (v) trajectories leading to spheres 
quasi-chaotically orbiting the spheroid. In this paper we show that the type of trajectory depends on the 
initial relative position of the sphere and spheroid and the intitial orientation of the spheroid. Using a 
Monte-Carlo method, we have determined the distribution in the various types of trajectories for various 
orbit constants and axis ratios of the spheroid. 

Key Words: particle deposition, heterocoagulation, two-body hydrodynamic interactions, spheroids in 
shear flow 

I N T R O D U C T I O N  

In a previous paper (Petlicki & van de Ven 1990) we presented the solution of the trajectory 
equations for a small but non-Brownian spherical particle near a freely rotating spheroid in simple 
shear flow. Examples were given of trajectories leading to the capture in primary and secondary 
energy minima. These interactions show the importance of particle shape in hydrodynamic 
interactions. The interaction of a small spherical particle with a rotating spheroid is, for example, 
relevant to papermaking, where small colloidal particles (fillers) interact with pulp fibres which can 
be modeled as slender spheroids. 

Compared with the limiting trajectory approach in the case of two-sphere interactions in simple 
shear flow (Curtis & Hocking 1970; van de Ven & Mason 1977; Zeichner & Schowalter 1977; van 
de Ven 1982; Adler 1981a, b), the trajectories of particles in the neighborhood of a spheroid are 
much more complex. Even if particles cross the same point in the linear flow sufficiently far from 
the spheroid for the flow field to be undisturbed, the number of possible trajectories is infinite, since 
an infinite number of spheroid orientations exist relative to a fixed reference frame. In considering 
the transport of spherical particles to a spheroidal collector in simple shear flow, we have identified 
by a trial-and-error method five possible states which can be reached by a particle near a spheroidal 
collector: (i) direct capture; (ii) simple separation; (iii) delayed capture; (iv) delayed separation; and 
(v) capture in the flow field. 

State (i) is reached when a particle is immediately captured by a spheroid during the first 
encounter. State (ii) is defined by a single-pass trajectory. In cases (iii) and (iv), a particle orbits 
a spheroid one or more times and in the end is either captured or separates towards infinity. 
State (v) was employed because in some cases it is impossible to differentiate between states (iii) 
and (iv) in a reasonable amount of computation time. 

In this paper a Monte-Carlo method is used to estimate the probability distributions for the 
above states as well as the initial distribution of particles captured in a primary energy minimum 
on the surface of the spheroid. 

MONTE-CARLO SIMULATION 

Under neutrally buoyant conditions in a Newtonian fluid with viscosity #, the trajectory of a 
non-Brownian particle of radius ol, near a spheroidal collector in low Reynolds number simple shear 
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flow can be found by integrating numerically the following set of dimensionless equations, 
expressed in a Cartesian frame X ( c f .  f i g u r e  1)  rotating with the spheroid: 

3 Fl Fcol l 
dx i=  F3vi_ (F, - F, Fz)//2i Y', //2jvi + / / 2 , -  
dt j= j 6n#ap Gb 

and 

where 

[1] 

d~b l r~sin 2z - c o s  2 
- -  = - B [21 dt 2 (r 2 sin 2 ~ + cos 2 r)[C2(r 2 sin: z + cos 2 T) + 1] ~/2' 

t ( tan  t~0) 
Z r e + re- 1 ~- tan - l [3] \ re ./ 

and 

with initial conditions: 

r 2 -  1 
B = - -  G2+l ' 

for t = O, 

c~=c~o, x i=xo,  and ~ =0 .  

The equatorial semi-axis of the spheroid, b, and the reciprocal shear rate, G - 1, have been chosen 
as the unit length and the unit time, respectively. C is the orbit constant describing the precession 
of the symmetry axis of the spheroid about the vorticity axis of the undisturbed simple shear flow 
(figure l, X'-axis), G = a/b is the ratio of the symmetry semi-axis, a, of the spheroid to its equatorial 
semi-axis, b. fl2k are elements of the matrix which transform the local Cartesian coordinate system 
connected to frame X (rotating with the spheroid) to the frame in which one of the velocity 
components, vi, of a fluid element is normal to the surface of the spheroid. F~ are the hydrodynamic 
correction functions for particle-wall interactions tabulated by Brenner (1961), Goldman et al. 
(1967) and Goren & O'Neil (1971). In the colloidal forces, F¢ol, retarded van der Waals attractions 
with London wavelength 2 L = 1 x 10-7m (cf. Weise & Healy 1969) were considered so that under 
these conditions fast deposition occurs. The complete expressions for vi =f ire ,  C, ~k, x~, ~) and//ki 
are given by Petlicki & van de Ven (1990). 

F;, Foo, and//2; are functions of the normal distance between a particle and a spheroid. Although 
in the rotating frame X the problem of distance is reduced to two dimensions, we were unable to 
find an analytical solution. Thus, the instantaneous distance was calculated numerically in each 
integration step. The spin equation [2] gives rise to an elliptic integral with solution ¢ = f ( Q  being 
an oscillating function of time (cf. Hinch & Leal 1979) with frequency depending on the orbit 
constant, C, and the axis ratio, re, of the spheroid. Since the motion of a particle and the rotation 
of a spheroid are coupled, the system of equations [1, 2] has a stable solution only when the 
maximal integration step is much smaller than the period of oscillation, regardless of how far the 
particle is from the spheroid. Obviously, the limitations in the maximal integration step slow down 
the calculations tremendously when the initial particle position in simple shear flow unperturbed 
by the spheriod is close to the vorticity plane (X~ X~-plane, figure 1), or when a particle orbits the 
spheroid several times while crossing the vorticity plane far from the spheroid. 

The initial orientation of a spheroid relative to a space-fixed Cartesian coordinate system can 
be expressed (cf. figure 1) in terms of the azimuthal angle, qb, which describes the position of the 
symmetry axis of the spheroid relative to the shear plane and the orbit constant, C. The density 
of the steady-state orientation distributed function in azimuthal angles, P~0 (~b), for an infinite rotary 
P6clet number (Per = G/Dr = oo, G being the rate of shear and D r the rotary diffusion coefficient) 
is known (Anczurowski & Mason 1967) and can be expressed as follows: 

re [41 
p~ (~b) = 2n (r ~ cos 2 ~b + sin 2 tk)" 
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Thus, in a steady-state a prolate spheroid (re > 1) spends more time with its symmetry axis 
aligned along the stream than perpendicular to it. For an oblate spheroid (re < 1) the opposite is 
true. 

The orbit constant, C, is defined by the following equation: 

tan 0 
C = (r~ cos 2 ~b + sin 2 ~b) t/2, [5] 

re 

where 0 is the polar angle. The orbit constant ranges from C = 0 (the symmetry axis perpendicular 
to the shear plane) to C = oo (the symmetry axis in the shear plane). 

The steady-state orientation distribution functionf(C) in orbit constants was determined by Leal 
& Hinch (1971) for large but finite Per. Our solution of trajectory equations is exact only for 
Per = oo and f(C) is determined solely by the initial distribution of the orbit constants. The 
Eisenschitz (1932) hypothesis, based on the assumption that particles are initially oriented over all 
possible directions with equal probability, has never been supported by experiments (cf. Mason & 
Manley 1956; Anczurowski & Mason 1967). Because of this we performed Monte-Carlo calcu- 
lations for an orbit constant C = 0, and two arbitrarily chosen orbit constants C = 1 and C~oo.  

The initial orientation of the spheroid in azimuthal angles, ~b0, was selected randomly with 
weights given by the distribution function, po0(~b). 

The initial positions of the particles were sampled randomly in an arbitrarily chosen plane, 
perpendicular to the direction of flow and situated in a simple shear flow undisturbed by the 
spheroid. Because of the symmetry properties of the system (Bretheron 1962), only one quadrant 
of the X~ X~-plane was chosen (cf. figure 1). The plane was divided into a reasonable number of 
squares (70-150) and in each of them the initial position of a particle was selected randomly. The 
total number of particles sampled in a given square was in the 50-350 range, depending on the 
variance analysis of the number of particles intercepted by the spheroid. The calculations were 
continued until the error in the distribution in the various types of trajectories was < 10%. 
Typically, a quadrant of the capture cross section was sampled up to several thousand times. 

For each trial the components of the position vectors of particle were transformed via the 
appropriate matrix (cf. Petlicki & van de Ven 1990) to frame X, rotating with the spheroid, and 
the trajectory equations were integrated until we were able to distinguish, at least partially, between 
states of delayed capture and separation. However, we did not find clear criteria to differentiate 
trajectories leading to different states in the rotating frame X. Thus, in various time intervals the 
components of the position vectors were transformed back to frame X' when the criteria are 
obvious. Since in Jeffery's (1992) solution the disturbance of the velocity field produced by a 

f X14 X I 
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v 3 ~ G x  2 

X' 3 

Figure I. Orientation of a spheroid relative to a space-fixod Cartesian frame X' in simple shear. 0 and 
q~ are the polar and the azimuthal angles, respectively. Also shown is one quadrant of the capture cross 

section in the plane X~ X~ selected for sampling the initial positions of the particles. 
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Figure 2. Capture cross sections of  two equal spheres as a function of  CA calculated for a retarded 
attractive force with 2L/ap = 0.01 by Zeichner & Schowalter (1977) (lines) and from [1] and [2] (symbols). 

The length scale is normalized by the radius of  the sphere, ap. 

spheroid decays very slowly, the separation between a sphere and a spheroid was assumed to occur 
when the distances were > 10 major semi-axis of the spheroid. 

The surface area of a capture cross section for two spheres in simple shear flow decreases 
substantially (van de Ven & Mason 1977; Zeichner & Schowalter 1977) when the parameter 
CA = A/67r#a3G (A and ap are the Hamaker constant and radius of the sphere, respectively), being 
a measure of the ratio of colloidal to hydrodynamic forces, decreases. For two non-equal spheres 
the surface area of capture cross sections (cf. Adler 1981a) decreases very rapidly when the radius 
ratio of spheres deviates from unity. After several thousands of trials we recognized that the 
calculation of a capture cross sections requires an unrealistic amount of computer time when 
colloidal forces are weak and the particle is very small compared with the spheroid. 

For sufficiently strong attractive colloidal forces, as has been shown by Dabros & Adamczyk 
(1979), the increase in the hydrodynamic drag a particle experiences while approaching a solid wall 
is balanced by the attractive dispersion forces. Fortunately, we found that the effect of the collector 
curvature on the particles trajectories depends on the ratio of colloidal to hydrodynamic forces, 
CA. Figure 2 shows a comparison of the capture cross sections of two equal spheres as a function 
of CA, as calculated by Zeichner & Schowalter (1977) and from [1] and [2] with re = 1. Since capture 
cross sections are almost the same up to CA = 0.1, we can conclude that the effect of the curvature 
of spheroidal collectors is negligible for CA > 0.1, even if it equals the curvature of the particle. 
Thus, for strong enough attractive colloidal forces the size of a particle is only limited by the fact 
that a large particle can significantly perturb the rotational motion of the spheroid. 

RESULTS AND DISCUSSION 

The probability density presented in this paper is proportional to the density of points on the 
graphs, representing the initial positions in the X'~ X~-plane. The unit length is always the equatorial 
semi-axis of the spheroid, b. Since the computation time of the first part of a particle trajectory 
is strongly affected by the relative velocity between the spheroid and the particle, the initial 
positions of particles with X~ = 0.05b were usually omitted in the Monte-Carlo calculations. 

The probabilities and distribution of states (direct capture, delayed capture and capture in the 
flow field) for an axis ratio of the spheroid r e = 2 and orbit constant C = 0 are shown in figure 3. 
The probability density for the direct capture state is equal to one. The boundary of the capture 
cross section is sharp and is defined by the states of delayed capture and capture in the flow field. 
The probability of delayed separation is equal to zero. Thus, for this particular orbit constant the 
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Figure 3. Distribution of states for one quadrant of the capture cross section for C = 0 and r e = 2. 
The length scale is normalized by the equatorial semi-axis of the spheroid b ffi 5/~rn. The remaining 
conditions are: ap/b = 0.2 and CA = A/6xl~Ga.b 2ffi 1.06. The probability density is normalized to 50 

points/2.25 x 10-2b 2. 

solut ion o f  the trajectory equations leads to qualitatively the same capture cross  sect ions as for 
two-sphere  interactions in s imple shear flow. 

Al though the capture cross  section was  computed  by using [1] and [2] the problem can be solved 
more  efficiently in frame X' .  As  was  pointed out  previously (Petlicki & van de Ven 1990) for C = 0 
the f low field about  the spheroid becomes  simplified and for an axis ratio r~ = 1 is the same as that 
given by C o x  e t  a/ .  (1968) for a sphere. Addit ional ly ,  similar to two  spheres, it is sufficient to sample  
points  around the boundary o f  the capture cross  section, which speeds up the calculat ions 
tremendously .  
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Figure 4. Distribution of states for one quadrant of the capture cross section for C -- 1 and r e -- 2. The 
remaining parameters are as in figure 3. 
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Figure 5. Distribution of  states for one quadrant  of  the capture cross section for C = 10 ~ and r e = 2. The 
remaining parameters are as  in figure 3. 

For the same axis ratio re = 2, but orbit constants C = 1 and C = 10 ~, the density and distribution 
of states changes drastically (cf. figures 4 and 5). The delayed separation state appears a n d  all 
states partially overlap. The probability density of direct capture decreases. In figure 4 there appears 
to be a region where the probability of direct capture is one, while this region has almost 
disappeared in figure 5. The boundary of this region is difficult to pinpoint since it is difficult to 
rule out small probabilities of delayed capture. Figure 6 shows two capture cross sections calculated 
for the same particle--spheriod system and the same orbit constant, but with the first one computed 
with the same assumptions as made by Smoluchowski (1917). He approximated two-sphere 
collisions in simple shear flow by neglecting colloidal and hydrodynamic interactions and with the 
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Figure 6. Distribution o f  the direct capture state for one quadrant  of  the capture cross section, calculated 
using the Smoluchowski (1917) approximation (a) and from the full model (b) for C = ! a n d  r, = 2. The 

remaining parameters are as in figure 3. 
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undisturbed simple shear flow extended up to the surface of the collision sphere. The collision cross 
section of a spheroid of semi-axes a and b is one with semi-axes (a + a~) and (b + ap). It can be 
seen that the probability distributions in the plane of the capture cross section are similar and reflect 
the fact that the projected area of a spheroid in simple shear on the X~ X~-plane is a periodic 
function of time (van de Ven 1989), and the probability of a particle hitting the surface ofa  spberiod 
increases in the direction toward the center of the spheroid, Nevertheless, the motion of  a particle 
and the rotation of the spheroid are coupled and the local value of the probability density depends 
on the selection of the reference plane (X~X~-plane in figure 1). However, it was found that the 
number of collisions between spheres and spheroids is practically independent of the choice of the 
location of  the reference plane. 

As was mentioned above, the state of capture in the flow field was introduced because we were 
unable to distinguish between the delayed capture state and the delayed separation state in a 
reasonable amount of computation time. For an orbit constant C = 0, the situation is clear since 
the delayed capture state does not exist. All particles crossing the limiting trajectory under the 
action of attractive colloidal forces have to be captured sooner or later. For C > 0, the trajectories 
leading to capture in the flow field are distributed in between those leading to delayed capture and 
delayed separation, depending on the orbit constant and the axis ratio of the spheroid. 

Figures 7, 4, 8 and 9 show the results for C = 1 and re = 5, 2, 0.5 and 0.2, respectively. Although 
a comparison of spheroids rotating with the same orbit constant and different axis ratios is risky 
because they rotate completely differently (of. [5]), the relative density of the delayed separation 
and capture state increases as the period of rotation of a spheroid T = 2~r(re + re- 1)G - l increases. 

The initial number of collisions per spheroid can be calculated in the same way as for two-sphere 
interactions (van de Ven & Mason 1977). The contribution of a characteristic tail in the capture 
cross section for the particle capture in the flow field (of. figure 3) is not important for C = 0 and 
strong colloidal interactions, since particle velocities are relatively small in this region of the capture 
cross section. For orbit constants C > 0, the contribution of trajectories leading to capture in the 
flow field, as well as leading to delayed capture, can be substantial and the initial number of 
collisions per spheroid can be estimated only with limited accuracy. 

Figures 8 and 10 show the influence of the ratio of colloidal forces to the hydrodynamic forces 
CA and the size of the particle on the capture cross sections of disks with axis ratio re = 0.5 rotating 
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F i g u r e  7. D i s t r i b u t i o n  o f  s t a t e s  f o r  o n e  q u a d r a n t  o f  the  c a p t u r e  c r o s s  s e c t i o n  for  C = I a n d  r e = 5. The 
r e m a i n i n g  p a r a m e t e r s  a s  in  f i gure  3. 
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Figure 8. Distribution of states for one quadrant of  the capture cross section for C = 1 and r e = 0 .5 .  The 
remaining parameters as in figure 3. 

with orbit constant C = 1. The calculation of the data in figure 10 was performed on a computer 
about 20 times faster than the one used in calculating figure 8. In order to distinguish between 
states of delayed capture and separation, the computation time for each trajectory was about 
4 times longer than that of figure 8. The probability of direct capture is about 2 orders of 
magnitude lower. The area of the capture cross section occupied by the state of direct cap- 
ture decreases but its "shape" does not change. The distributions of delayed capture, separation 
and capture in flow field states are similar to those in figure 8, but the relative probability of 
those states is much higher. 

Similar to two spheres, the capture efficiency (van de Ven & Mason 1977) can be introduced as 
the ratio of the number of collisions estimated from the full model and the number obtained using 
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Figure 9. Distribution of  states for one quadrant of the capture cross section for C = I and r e = 0 .2 .  The 
remaining parameters as in figure 3. 
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the Smoluchowski (1917) approximation (cf. figure 6). However, first the problem of  the 
dependency of  the Smoluchowski approximation on the orbit constant and axis ratio of  the 
spheroid must be solved and the influence of the initial distribution of  the orbit constants on the 
initial number of  collisions has to be estimated. 

Figure 11 shows the initial distribution of  particles captured on the surface of  a spheroid as a 
function of  orbit constant. The distributions were projected on both the X~ X~- and X~ X~-planes 
and averaged. For orbit constants close to zero the distribution is uniform along the symmetry axis 
except at the poles where deposition is restricted by weak colloidal interactions. When the orbit 
constant increases, particles are deposited near the poles of  the prolate spheroid rather than near 
its equator. For disk-like particles the probability of  capture increases in the direction of  the edges 
of  the spheroid. Thus, in a dilute suspension containing an insufficient number of  particles to obtain 
a full coating of  the surfaces of  the spheroids, a non-uniform coverage of  particles on the spheroids 
should occur. 
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the XI-X2X3 plane (in particle-fixed coordinates) for r. ffi 2. 
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CONCLUDING REMARKS 

In this paper we took the first step in quantifying the number of collisions between spherical 
particles and spheroidal collectors freely rotating in simple shear flow. Compared to two-sphere 
interactions, the problem is, in general, much more complex. Two additional parameters play a 
role in the process of heterocoagulation: the orbit constant and the axis ratio of the spheriod. The 
influence of the orbit constant is crucial because in the sphere-spheroid systems under consideration 
the initial distribution of the orbit constants is usually unknown. 

It was shown that the trajectories between attractive spheres and spheroids can be divided into 
five types, two of which result in contact between the particles, i.e. on deposition of the sphere on 
the spheroid. The distribution of the deposited particles was found to be non-uniform and to 
depend on the orbit constant and axis ratio of the spheriod. 
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